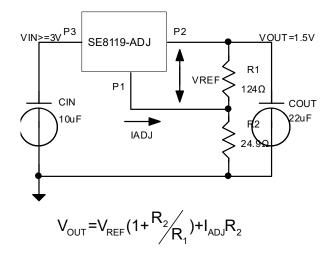


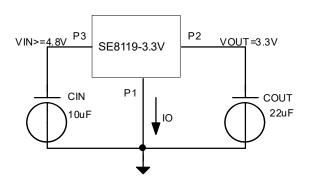
Description


The SE8119 series of high performance low dropout voltage regulators are designed for applications that require efficient conversion and fast transient response.

Pin Configuration

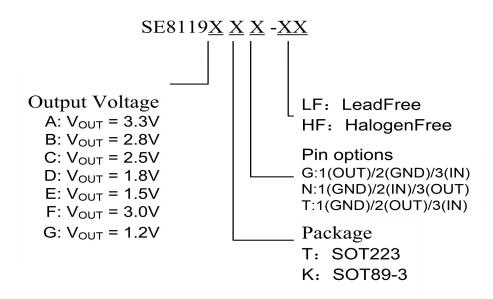
Typical Application

Adjustable Voltage Regulator


Features

- Low Dropout Performance.
- Guaranteed 1000mA Output Current.
- Wide Input Supply Voltage Range.
- Over-temperature and Over-current Protection.
- Rugged 3KV ESD withstand capability.
- Available in SOT-89-3L and SOT-223-3L Packages.

Application


- PC-Camera
- > Active SCSI Terminators.
- > High Efficiency Linear Regulators.
- > 5V to 1.2V Linear Regulators
- Motherboard Clock Supplies.

Fixed Voltage Regulator

Ordering/Marking Information

Absolute Maximum Rating

Symbol	Parameter	Maximum	Units
V _{IN}	Input Supply Voltage	15	V
TJ	Operating Junction Temperature Range	0 to 125	°C
T _{STG}	Storage Temperature Range	-40 to 150	°C
TLEAD	T _{LEAD} Lead Temperature (Soldering 10 Sec)		°C

Electrical Characteristic

 $V_{IN,MAX} \le 8V$, $V_{IN,MIN} - V_{OUT} = 1.5V$, $I_{OUT} = 10$ mA, $C_{IN} = 10$ μ F, $C_{OUT} = 22$ μ F, $T_J = 0 - 125$ °C, unless otherwise specified.

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
Vo	Output Voltage	SE8119-3.3	3.234	3.3	3.366	V
V_{REF}	Reference Voltage (Adj. Voltage Version)	$(V_{IN} - V_{OUT}) = 1.5V$ $I_{OUT} = 10mA$	(-2%)	1.250	(+2%)	V
V_{SR}	Line Regulation	$V_{OUT} + 1.5V < V_{IN} < 8V$ $I_{OUT} = 10mA$		0.3		%
V_{LR}	Load Regulation ⁽¹⁾	$(V_{IN} - V_{OUT}) = 1.5V$ $10mA \le I_{OUT} \le 800mA$		1.2		%
ΙQ	Quiescent Current			2.6		mA
I _{ADJ}	Adjust Pin Current			51		μA
ΔI_{ADJ}	Adjust Pin Current Change	$V_{OUT} + 1.5V < V_{IN} < 8V$ $10mA \le I_{OUT} \le 800mA$		6		μA
V_{D}	Dropout Voltage (1), (2)	I _{OUT} = 800mA		1.5		V
lo	Minimum Load Current			0.4		mA
VI _{CL}	Current Limit (1)			0.9		Α
T _C	Temperature Coefficient			0.05		%/°C
OTP	Thermal Protection			150		°C
V _N	RMS Output Noise	T _A = 25°C, 10Hz ≤ f ≤ 10kHz		0.003		%Vo
R _A	Ripple Rejection Ratio	$f = 120 Hz,$ $C_{OUT} = 22 \mu F \text{ (Tantalum)},$ $(V_{IN} - V_{OUT}) = 2 V, I_{OUT} = 10 mA$		58		dB

Notes:

- 1. Low duty cycle pulse testing with which $T_{\text{\scriptsize J}}$ remains unchanged.
- 2. $\Delta V_{OUT} = 1\%$.

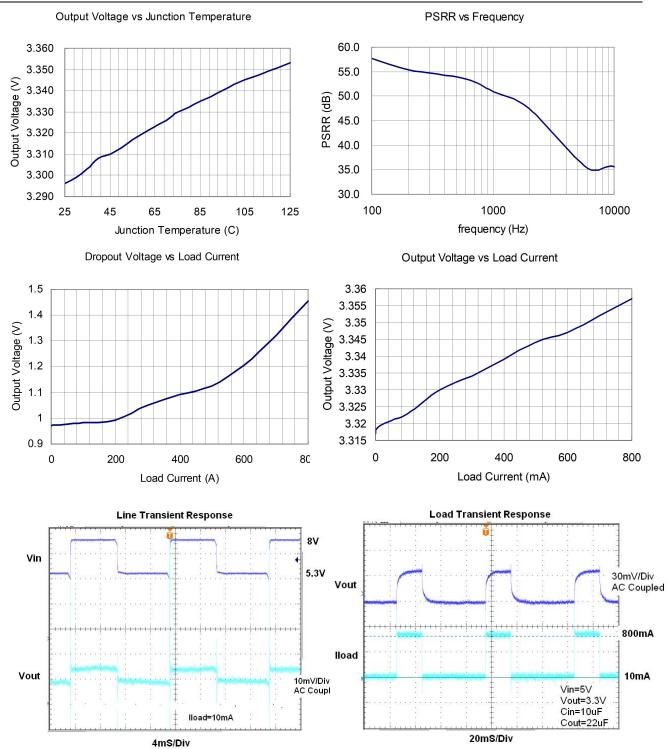
Application Hints

Like any linear voltage regulator, SE8119 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

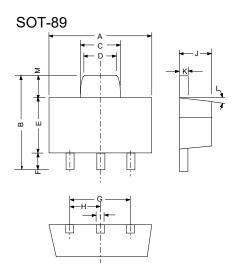
An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increased without upper limit.

Output Capacitor

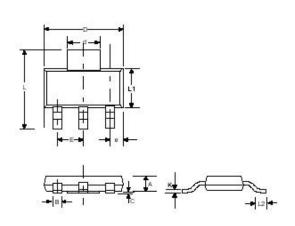

An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $22\mu\text{F}$ but may be increased without limit.

Thermal Considerations

It is important that the thermal limit of the package is not exceeded. The SE8119 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:


The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 150°C/W for SE8119. SE8119 is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the maximum P_D is limited to about 1.0W. In other words, if $I_{OUT} = 500$ mA, then $[V_{IN} - V_{OUT}]$ can not exceed 2V.



Outline Drawing for SOT-89-3L

DIMENSIONS					
DIM ^N	INCHES		MM		
	MIN	MAX	MIN	MAX	
Α	0.173	0.181	4.400	4.600	
В	0.159	0.167	4.050	4.250	
С	0.067	0.075	1.700	1.900	
D	0.051	0.059	1.300	1.500	
E	0.094	0.102	2.400	2.600	
F	0.035	0.047	0.890	1.200	
G	0.118REF		3.00REF		
Н	0.059REF		1.50REF		
I	0.016	0.020	0.400	0.520	
J	0.055	0.063	1.400	1.600	
K	0.014	0.016	0.350	0.410	
L	10°TYP		10°TYP		
М	0.028REF 0.70REF		REF		

Outline Drawing for SOT-223

DIMENSIONS					
DIM ^N	INCHES		MM		
	MIN	MAX	MIN	MAX	
Α	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.071	·	1.80	
В	0.025	0.033	0.640	0.840	
С	0.012	-	0.31	- ·	
D	0.248	0.264	6.30	6.71	
d	0.115	0.124	2.95	3.15	
Е		0.090		2.29	
е	0.033	0.041	0.840	1.04	
L	0.264	0.287	6.71	7.29	
L1	0.130	0.148	3.30	3.71	
L2	0.012	· ·	0.310	_	
K	0.010	0.014	0.250	0.360	

Customer Support

<u>Seaward Electronics Incorporated - China</u>

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Seaward Electronics Corporation - Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C Tel: 886-2-2712-0307 Fax: 886-2-2712-0191

Seaward Electronics Incorporated - North America

1512 Centre Pointe Dr. Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 6/28/2018